IF_5 – AN EFFICIENT OXIDATIVE FLUORINATION AGENT FOR GROUP(V) ORGANYL COMPOUNDS

H. J. Frohn* and H. Maurer

Universität Duisburg, Lotharstr. 1, D-4100 Duisburg 1 (F.R.G.)

The oxidative fluorination of triaryl-element-compounds of P, As, Sb and Bi by ${\rm IF}_5$ in ${\rm CH}_2{\rm Cl}_2$ or ${\rm CH}_3{\rm CN}$ has been investigated with the result of a simple one-pot-reaction with nearly quantitative yield of the wanted triaryl-element-difluorides.

Attack of the aromatic ring or the C-H-bond by ${\rm IF}_5$ was never observed. Strong electron-withdrawing substituents of the aryl-group are limiting this reaction. Attempts to prepare ${\rm IF}_3$ by low-temperature-reduction of ${\rm IF}_5$ with triarylphosphine failed. The only demonstrable reduction product of ${\rm IF}_5$ is iodine.

The results of the reactions of triaryl-element-compounds with ${\rm IF}_5$ are compared with those of the corresponding element-trihalides with ${\rm IF}_5$. Thus substitution of chlorine by aryl-groups in element(III)-chlorides makes oxidation to element(V)-fluorides more easy.

Carbon-element-bondfission as slow side-reaction is observed when aryl-element-tetrafluorides are prepared. This bondfission is caused by 'IF' formed from iodine and $\mathrm{IF}_5.$

Triaryl-element(V)-oxides behave different against IF_5 ; e.g. triphenylphosphineoxide forms a 2 : 1 adduct with IF_5 whereas triphenylarsineoxide shows oxide-fluoride-exchange.